
Continuous Software Quality analysis
for the ATLAS experiment at CERN

Andrew Washbrook on behalf of the ATLAS collaboration
University of Edinburgh
WSSSPE5.1 Workshop, Manchester
6th September 2017

Software Quality Evaluation on ATLAS

● Software quality tools are used by the ATLAS developer community to identify,
track and resolve any software defects in close to 6 million lines of code

● cppcheck and the Synopsys Static Analysis Tool (Coverity) regularly scan the
entirety of the main software release
○ Results are available in custom portals accessible for all developers
○ Scheduled notifications of any urgent defects to code maintainers

The regular application of software quality tools in large collaborative projects is
required to reduce software defects to an acceptable level

● More general code quality indicators, coverage testing tools and code formatting
checkers are also used as part of the development and build process

http://cppcheck.sourceforge.net/
http://www.coverity.com/

Limitations and new approaches
● Uninitialised variables and sources of memory leaks

are usually dealt with promptly
● Other defects in non-critical sections of code often

remain unresolved
● This leads to a backlog of legacy defects where:

○ Responsibility and provenance of the code is
unrecorded

○ Developer effort is re-organised or not retained

How can this be addressed?
 ● Defects periodically re-evaluated and disregarded if their impact is marginal
● Identify and address defects before they are introduced into a software release

ATLAS Code Review Process
ATLAS Offline

Software Repository

Developer Fork

Release Branch

Packages affected by
Merge Request (MR)

Labels for code
review management

Continuous
Integration (CI) results

● Code reviews performed by a dedicated rota
of shifters to validate any changes

● Lightweight testing and build correctness
checking for each proposed code change

Continuous Software Quality Evaluation
Ideal opportunity to apply software quality checks as part of the new code review process

● Code review shifters can catch defects as they are introduced
● Defects are audited at source for free as part of the merge request discussion

Some practicalities

● Software Quality CI tests should be quick (less than 5 minutes)
○ Avoid additional load on CI servers
○ Reasonable response time expected by shifters to progress review

● Ideally perform checks only on the code directly affected by any changes in a given
merge request

● Test results should be only used as advisory information in the review discussion

Continuous Integration cppcheck Test

● Feasibility testing using a lightweight static
code analysis application (cppcheck)

Get Merge Request ID
and affected packages

Run cppcheck static
code analysis

Load analysis and
reference results

Compare defects
between results

Define defect states of
selected results

Publish summary to
review discussion

Merge Request

Reference
Result

● Feedback in code review indicates a state
change based on the modified code

● Defects are either introduced, removed or
remain unresolved against a reference result
generated from the main development
branch

On Code
Modification

Continuous Integration cppcheck Report
Sample summary report in
Merge Request discussion

First check for
introduced defects

Then flag any defects
contained in files

modified by developer

Drill down into defects
by file ordered by
severity and amount

Order by Severity Link to code browsing location
in Gitlab

Truncate list if large
number of defects found Finally show remaining defects from

affected packages

Link to full test results on
Jenkins server

Software Quality Trend Analysis

[1] https://github.com/terryyin/lizard
[2] https://www.imagix.com/user_guide/software-metrics.html

[3] https://www.guru99.com/cyclomatic-complexity.html

● Single value quality metrics are not instructive
● Instead capture trend information through the

evolution of the code to put any reported value into
context

● Define acceptable thresholds before developer
action should be taken

Control flow diagram indicating
cyclomatic complexity [3]

How can these indicators be best interpreted?

● Lines of code with comments
● Cyclomatic Complexity
● Halstead Program Difficulty
● Class Coupling
● Function Decision Depth

● Also possible to apply holistic measurements of code
quality to the review process

Example Code Quality Indicators [1,2]

https://github.com/terryyin/lizard
https://www.imagix.com/user_guide/software-metrics.html
https://www.guru99.com/cyclomatic-complexity.html

Outlook

● Continuous software quality evaluation for ATLAS can be achieved by including
lightweight defect testing into the code review process

● Accumulation of experience from review shifters and developers will help with
optimising defect tests and results presentation

● More extensive code quality reporting mechanisms are being evaluated

● Chosen solutions aim to be project agnostic
○ Greatly helped by recent migration from bespoke and legacy tools
○ Similar approaches could be applied elsewhere

Additional Material

Software Defects

● Software defects may not be flagged by compilers

● Redundant code paths
● Errors of omission
● Inefficient use of allocated memory

● If left unchecked the accumulation of defects can result in:
○ Performance degradation at scale
○ Problems with the long-term sustainability of the software

Why is resolving software defects important?

Examples

int *particleID = new int;

*particleID = newValue;

...

Simple example of a C++ software defect (memory leak)

Testing Infrastructure
gitlab:stable jenkins:stable

es:stable kibana:stable

Repository
Gitlab

Registry

DataConfig

Test
Harness

DataConfig
Test

Harness

gitlab:dev6 jenkins:dev6

es:stable kibana:stable

Site A

Site B

Deploy to
production
ATLAS CI
System

Common
Project Area

● Distributed testbed provides a development
sandbox without interruption to the production
ATLAS CI System

● Container images of key services easily
instantiated across multiple sites

● Instance configuration snapshots stored in a
common Gitlab container registry

● Test harness emulates representative merge
request patterns

● Software quality CI tests deployed to production
once fully validated

Trend Analysis Example

Pull latest build from git
master branch

Run code quality
analysis (e.g. Lizard)

Convert Results to
JSON format

Post results to
Elasticsearch Index

Get merge request ID
and affected packages

Run code quality
analysis (e.g. Lizard)

Get reference results
from Elasticsearch

Determine any
significant changes

Publish results to review
discussionKibana visualisation and

quality dashboards

Threshold monitoring
and notification

Triggered by Merge RequestScheduled check on latest build

● Use Lizard as an example code
quality indicator tool

● Captured code quality data for 15
snapshots of full release

● Each release has over 51,000 files
and 219,000 functions

Injection of highly-branched code section to test
cyclomatic complexity monitoring

Defect Triage Methods

● Promote defect resolution and assign responsibility
through reviewer-led triage

● Unimportant or incorrectly identified defects need
to be flagged to aid future identification

Possible Methods
 ● Check and maintain defect suppression lists
● Make Coverity-based triage data accessible to

Gitlab and issue tracking (JIRA)
● Use Gitlab webhooks to monitor triage trigger

actions in the merge request discussion

Coverity Connect Triage

Gitlab webhook on merge
request update

Listener Daemon

“/SQ: set ignore CID 12345”

