
WSSSPE Working Groups – Summaries

WSSSPE4 (Manchester, 2016): 12 Working Groups have formed to work on different
topics during, and beyond, the workshop. If you want to join (or restart) a Working
Group, see the WSSSPE4 report (https://arxiv.org/abs/1705.02607) for details.

1 Verifying best practices & metrics for sustainable research software
2 Software Sustainability Alliance
3 Scientific Software Prototyping Infrastructure (S2PI)
4 CodeMeta
5 White paper on developing sustainable software
6 Social science for scientific software
7 Software best practices for undergraduates
8 Meaningful metrics for sustainable software
9 Coordinating access to continuous integration (CI) for research software
10 Software engineering processes tailored for research software
11 Open research index
12 Letters of evaluation for computational scientists

1 / 14

https://arxiv.org/abs/1705.02607


(1) Verifying best practices & metrics for sustainable research software

The Working Group addressed the following questions:
• Are the suggested software engineering for science/academia best

practices verified when evaluated against open source research
software projects that currently use modern software engineering?

• Are the suggested metrics for science/academia verified to be relevant
when evaluated against open source research software projects that
currently use modern software engineering?

• Do research groups have role models to follow for successful best
practices in research software?

2 / 14



(1) Verifying best practices & metrics for sustainable research software cont.

The team identified the following research projects to use in addressing the
above, though they did not get further than this:

• FLASH (astrophysics,
http://flash.uchicago.edu/site/flashcode/)

• GROMACS (chemistry, http://www.gromacs.org/)
• CIG (Earth science, http://geodynamics.org/)
• CUAHSI (Earth science, https://www.cuahsi.org/)
• CSDMS (Earth science,

https://csdms.colorado.edu/wiki/Main_Page)
• OntoSoft (biology, http://www.ontosoft.org/)
• ASCL (astronomy, http://ascl.net), specifically ASCL entries

sorted by citation count16
• yt-project (astronomy, http://yt-project.org)
• Einstein Toolkit (physics, https://einsteintoolkit.org/)
• SpEC (physics, https://www.black-holes.org/SpEC.html)
• pyCLOUDY (astrophysics, http://ascl.net/1304.020)

3 / 14

http://flash.uchicago.edu/site/flashcode/
http://www.gromacs.org/
http://geodynamics.org/
https://www.cuahsi.org/
https://csdms.colorado.edu/wiki/Main_Page
http://www.ontosoft.org/
http://ascl.net
http://yt-project.org
https://einsteintoolkit.org/
https://www.black-holes.org/SpEC.html
http://ascl.net/1304.020


(2) Software Sustainability Alliance

The Software Sustainability Alliance working group aims to establish an
alliance between organizations interested in improving the sustainability of
research software. Such an alliance would ease the collaboration between
member organizations to improve the sharing of expertise, resources and
best practices. It is currently seeking feedback on potential member
organizations, as well as the aims and scope of this alliance.

http://softwaresustainability.org/

4 / 14

http://softwaresustainability.org/


(3) Scientific Software Prototyping Infrastructure (S2PI)

There is a productivity bottleneck in HPC pertaining to the development
of simulation tools: few domain scientists develop simulation software,
even fewer know how to prototype such tools. This group attempts to
tackle this challenge through the development of novel software
prototyping infrastructure with an emphasis at a higher degree of
abstraction. The group deems the ability to rapidly construct software
artifacts that can be trusted in terms of the methods from their design up,
easily discarded when wrong and extended when right at low human and
computational cost to be one aspect of scientific software sustainability. In
essence, a motto for scientific software prototyping is fail hard, fail fast.

5 / 14



(4) CodeMeta

This group, which included people who had previously been working on the
CodeMeta project, formed to address the proposed project, “Define a
standard for metadata to be used in current repos including authors,
dependencies, . . . , repo URL.”
CodeMeta is an active project (https://codemeta.github.io/), and is
creating a minimal metadata schema for science software and code, in
JSON and XML. The goal of CodeMeta is to create a concept vocabulary
that can be used to standardize the exchange of software metadata across
repositories and organizations. CodeMeta started by comparing the
software metadata used across multiple repositories, which resulted in the
CodeMeta Metadata Crosswalk. That crosswalk was then used to generate
a set of software metadata concepts, which were arranged into a JSON-LD
context for serialization.
The CodeMeta schema has been released in version 2.0 in 2017
(https://doi.org/10.5063/schema/codemeta-2.0).

6 / 14

https://codemeta.github.io/
https://doi.org/10.5063/schema/codemeta-2.0


(5) White paper on developing sustainable software

Many diverse aspects and dimensions of developing sustainable software
can be investigated, such as economic, technical, environmental, and
social. This group aims to write white papers that will focus on scientific
environments and their implications, targeted at developers and project
managers of scientific software. Given the complexity of this field, it is
important to select a subset of sustainability aspects for the white papers.
The idea is to create a series of papers instead of trying to tackle all
important topics in one paper. For the first white paper, the group aims to
set the stage with successful use cases and an analysis of why they have
been successful. Further topics will include community-related practices,
government and management, funding, metrics, tools, and usability. The
group will collect feedback from the WSSSPE community on this first
white paper and extend it to a journal paper.

Update: The group is finalizing the first version.

7 / 14



(6) Social science for scientific software

This working group is motivated by the goal of building better connections
between academic researchers who are studying topics in or relating to
software sustainability with practitioners, managers, and administrators
who are working in the area of software sustainability. In any domain,
bringing research and practice closer together is a mutually beneficial goal,
but also has its challenges. This group met to discuss existing research
projects and findings that might be relevant for RSEs and others in the
software sustainability domain, then identified several gaps and challenges
to tackle in bringing research and practice together.

8 / 14



(7) Software best practices for undergraduates (Raniere Silva)

Participants: Jonah Miller, Aleksandra Nenadic, Raniere Silva, Francisco
Queiroz, Hans Fangohr, Prahbjyot Sing
Motivation: We were motivated by the perceived prevalence of “hidden
code” in scientific communities: code written by researchers in an
unsustainable way that is never shared with the larger community.
Original objective: To implement a course describing software
best-practices aimed at domain science.
What we actually did: We were unable to muster the time or
momentum to facilitate our original goal. However, thanks to the
leadership and efforts of Francisco Queiroz, we were able to come together
to write a paper discussing best practices for user interface design and to
provide some recomendations.
Our recomendations help address hidden code, if they are ever read by
authors of hidden code. However, a course curriculum would still be
valuable.
Next steps: Return to the original SMART steps we mapped out.

9 / 14



(8) Meaningful metrics for sustainable software

Meaningful Metrics for Sustainable Scientific Software aims to increase the
visibility of the quality of scientific software, facilitate the reusability of
scientific software, and promote the best software practices by
standardizing metrics via interviews with scientific software developers.
This working group believes improving the current software metrics system
will increase software sustainability. Currently, there are inefficiencies
regarding software duplication, sustainability, and selection, as well as
others, within the scientific software community. In order to address these
inefficiencies, Meaningful Metrics for Sustainable Scientific Software aims
to create a goal-oriented method to collecting productive metrics by
focusing on the developer side of software.
Goals: To identify the population of scientific software developers who
were willing to be interviewed → Form and categorize interview questions
→ Interview participants → Map the results to goals → Convert goals to
metrics → Analyze collected metrics

10 / 14



(9) Coordinating access to continuous integration (CI) for research software

Each developer of software with uncommon needs (hardware, software,
libraries, data sets), non-public code, or tests that exceed time limits for
free plans must acquire, setup, and maintain their own continuous
integration systems because their needs make them ineligible for popular
free services such as Travis CI. For example, software groups that develop
BIOUNO, CI4SI, or GROMACS have done this. Debian provides a testing
infrastructure (https://ci.debian.net/doc/) that is mature and supports
hardware and other requirement specifications.
Objectives: This group is interested in reducing the burden of different
projects having to build and maintain their own continuous integration
systems (when publicly available CI are not a fit), by coordinating and
sharing this burden across multiple projects.

11 / 14



(10) Software engineering processes tailored for research software

This working group is concerned with identifying processes that are not adequately
covered by general software engineering. Verification and testing is the first subtopic
that it addresses. Computational science and engineering applications have many
moving parts that need to interoperate with one another. The accuracy and reliability of
results produced by scientific software depends not only on the individual components
behaving correctly, but also on the validity of their interactions. As scientific
understanding grows, the corresponding computational software models are refined,
leading to more complex codes. Increasing complexity makes them more prone to
defects, not only in individual code units, but also in interaction among units. Therefore,
a strong verification process combined with a rigorous testing regime plays a critical role
in the prevention of generating incorrect scientific results. However, most science teams
struggle to find a good solution for themselves. Causes range from lack of exposure to
the practices, to distrust of adopting practices because they do not meet the needs of
the teams developing such software. The current focus of our effort is on testing
because it is the first step towards building a software processes that can lead to
provenance and reproducibility, the hallmarks of quality science.

12 / 14



(11) Open research index (Daniel S. Katz)

The aim of this group is to investigate the building of an index of research
products in an open sustainable manner. Its goal is not to eliminate
commercial products, but to build on what is there and provide data and
services that are missing.
The Open Research Index should take in all research products (papers,
software, datasets, workflows, etc.) from their publishers and recorders
(journals, societies, domain repositories, government [open access]
repositories, preprint servers, general repositories [e.g., figshare, zenodo])
and other services (CrossRef, ORCID). Each product should list authors
and citations and allow people to search the resulting network. Users
should also be able to interact with their own record and edit it, like
Google Scholar allows.

13 / 14



(12) Letters of evaluation for computational scientists

Letters of reference used for hiring, tenure, and promotion purposes are
typically first read by departmental committees that have expertise in the
core areas represented by the department. On the other hand,
computational scientists and in particular researchers working on scientific
software – more or less by definition – are typically interdisciplinary, and
the achievements that are assessed in such letters are consequently often
meaningless or at least hard to evaluate for disciplinary committees.
Both committees and letter writers need to be aware of this. Providing
best practice examples, and training both writers and recipients of letters
may be necessary to level the playing field for computational scientists.

14 / 14


