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Abstract—Forcefields are a crucial ingredient of Molec-
ular Dynamics (MD) simulations, describing the types and
parameters of interactions between the simulated particles.
These parameter sets, however, are typically specific to the
molecule in which the atoms appears, where within the
molecule the atom is positioned, the phase or state point
of the system, as well as the simulator tool in use. This
makes choosing the correct parameter values a tedious
and error prone task. Forcefield parameters, furthermore,
are often hard to locate: some are published in scientific
papers, others come with MD tools, often with no or
ambiguous documentation on their applicability. In this
paper, we present a framework that aims to solve this
data management issue, proposing a common format for
forcefields that is self-documenting with machine readable,
declarative usage rules. We believe that processes and tools
that are commonly used today in software development (e.g,
unit testing, verification and validation, continuous integra-
tion, and version control) are, with proper infrastructure
support, applicable to forcefield development, as well. The
paper describes how such an infrastructure can tackle man-
aging and evolving forcefields by the MD community, and
proposes a way to encourage and incentivize involvement
by the stakeholders.

I. Introduction
Molecular simulation plays a key role in understanding
the atomistic and molecular level interactions that un-
derlie many natural and man-made materials and pro-
cesses. [1]–[4] Classical molecular simulations rely upon
forcefields to describe the various interactions that exist
between atoms and/or groups of atoms, including non-
bonded interactions (van der Waals and electrostatics)
and bonded interactions (bonds, angles, and torsions).
These forcefields are typically expressed as a set of
analytical function with adjustable fitting parameters
for different atomic/molecular species. Considerable ef-
forts have been undertaken by many research groups
to develop accurate forcefields, both in determining the
mathematical functions and associated fitting parameters,
for a large variety of molecular species under differ-
ent conditions. Numerous forcefields (and associated
parameters), have been devised with acronyms such
as: AMBER [5], CHARMM [6], OPLS [7], SKS [1],
TraPPE [8], COMPASS [9] and GROMOS [10]. The
availability of these forcefields can significantly reduce
or completely eliminate the difficult and costly task of
determining the interactions between species, allowing

researchers to instead focus their efforts on the motivat-
ing scientific questions. For example, the large number
of parameters available for the OPLS forcefield has
allowed for the automated screening of drug molecules in
order to identify promising candidates for more effective
treatments of HIV [11].

Fig. 1. Perfluorobutane, CF3-CF2-CF2-CF3, molecule shown
with ball and stick representation.

However, while researchers do not necessarily need
to spend time developing the forcefield parameters, de-
termining which parameters to use (i.e., atom-typing)
is still often a tedious and error prone task. In many
forcefields, the appropriate interaction parameters will
depend on the local topological environment of atoms.
For example, the non-bonded interactions of carbon
atoms in perfluoroalkanes (PFA) are typically differ-
ent for terminal carbons verses “middle” carbons [12].
Similarly, when identifying the correct parameters for
a torsional term, one must typically consider not just
the backbone, (e.g., C-C-C-C), but also the bonds of
each atom in the backbone (e.g., CH3-CH2-CH2-CH3,
vs. CF3-CF2-CF2-CF3) [7], [13]. Consequently, a given
forcefield may include multiple unique parameters for
a given atom, whose usage depends on the chemical
context of the atom. That is, the appropriate parameters
will typically depend on a number of factors, includ-
ing the specific molecule in which the atom appears
(e.g., alkanes vs. perfluoroalkanes), or where in that
molecule the atom appears (e.g., terminal vs. middle).As
a clear illustration of this, we note that the OPLS all-
atom forcefield parameter database (as provided in the
TINKER molecular modeling software [14]) contains
427 different “types” of carbon atoms, which are all
differentiated based on their chemical context. Further-
more, determining which of the multitude of forcefield
parameters is most appropriate, based on the chemical
context of an atom, is often accomplished through brief,This work is licensed under a CC-BY-4.0 license.
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unstructured – and sometimes ambiguous – annotations
located in the forcefield parameter files. Even journal
articles associated with forcefield parameters can be
unclear, where parameters are typically listed in table
form, often with limited annotations or examples of
their usage. Also, given their static nature, parameters
provided in journal articles may not be the most up-to-
date, whether resulting from typographic errors or modi-
fications in later work. As a result, for many forcefields,
the formal logic required to distinguish atom types may
be difficult to find, difficult to interpret, out-of-date, or
simply ambiguous. This ambiguity is confounded by the
fact that many published journal articles that rely on
forcefields often provide only vague citations for the
source of the parameters.

Most research groups use some combination of hand
parameterization and logic based codes to facilitate the
process of atom-typing. Identifying atom types by hand,
while easy for small/simple molecules and important for
validation, becomes impractical for large molecules or
systems with significant heterogeneity. For molecules
with only a few atomic species and little variability, ad
hoc, logic-based codes are relatively straightforward to
write and test. However, as the number of unique atom
types increases, properly defining the appropriate if/else
statements required in most logic codes becomes oner-
ous, even for people who are well versed in programming
and have domain expertise in molecular modeling. Also,
nested logic statements are often difficult to adequately
test and debug and thus introduce a potential source
of error. Since ad hoc codes are not typically released
to the general community, any errors in the code may
go undiscovered and thus data based on flawed atom-
typing may appear in published scientific literature. To
address this, several community tools and approaches
have been developed to aid in atom-typing [15]–[20],
some of which are more generally applicable than others.
Forcefields developed in the biophysics community tend
to have exceptionally well vetted parameterization codes,
such as AMBER’s antechamber [21], but such tools are
typically designed to only work with their associated
forcefield and may also produce output specific to a
given simulation package, rather than a general form. In
general, these tools all rely on a hierarchy where rules
that identify more specialized atom types must be called
in precise order [21], such that more general atom types
are only chosen when more specialized matches do not
exist (i.e., they include rule precedence). Maintaining, let
alone constructing, these hierarchies is extremely error
prone and, just as in ad hoc codes, typically results
in source code with deeply nested if/else statements.
In these hierarchical schemes, in order to add a new
atom type or correct an error, a developer must have
a complete picture of the hierarchy and know exactly
where the relevant rule should be placed, such that it does

not inadvertently override other rules. This may impose
practical limits on functionality, where, for example, a
user is not able to easily extend the rules to include newer
parameters, or that such attempts to extend rules result
in incorrect atom-typing for other molecular species.

To address these issues, we are developing a new
framework for atom-typing, based upon first order logic
over graph structures. The novelty of our approach lies
in the declarative annotation syntax that allows for 1)
decoupling the definition of forcefield-specific atom-
typing rules from how a forcefield-agnostic tool uses
these annotations to automatically compute the atom-
typing of complex molecular systems, and 2) formally
verifying and automatically validating annotated force-
fields. Specifically, we proposed to:

• establish a forcefield agnostic (i.e., general) for-
malism to express the chemical context in which
a particular force field entry is applicable (i.e.,
forcefield usage semantics);

• develop a tool suite that automates atom-typing of
molecular structures using the semantics-annotated
forcefields;

• and establish a development process to create, incre-
mentally extend, and evolve annotated forcefields,
providing tools for automated verification, valida-
tion, and continuous integration techniques.

An important goal of the project is to disseminate
results and to foster community involvement through
the creation of a centralized online forcefield repository
containing the formally annotated forcefields, documen-
tation of how to annotate forcefields, along with files
for benchmarking and validation of the atom-typing
software. Given the importance of accurately applying
forcefields to molecular simulation, the new atom-typing
framework developed in this work has the potential
to significantly impact the community, affording re-
searchers greater confidence in the model parameters
used in their studies, eliminate the need to develop ad
hoc atom-typing codes, make forcefield parameter usage
clearer, and significantly reduce incorrect atom-typing as
a source of error and inconsistency in published results.

II. Vision
In our vision, forcefield definitions are not just sets of
tables with numerical data, but as unambiguous, well-
structured documents with rich metadata, including the
formal description of the chemical context in which the
particular parameter values can be applied. In the future,
the tedious and error prone task of manually atom-typing
and parameterizing complex molecular models (inputs
to simulators) will be eliminated, and replaced by the
automated process that relies on the machine-readable
forcefield usage semantics.

We envision forcefields as dynamic data entities
that evolve over time: parameterizations of additional



chemical species are added, already supported chem-
ical species are specialized, and parameter values are
tweaked for better modeling of the chemical interactions.
Forcefield definitions will be maintained by online com-
munities and hosted at shared repositories with version
control capabilities. These online repositories will also
support continuous integration (CI), i.e., automated ver-
ification, validation, and testing of the forcefields as they
evolve.

We believe that the developers of forcefield definitions
deserve credit for their efforts. The online repositories
will generate permanent URL links per forcefield ver-
sions, as well as document object identifiers (DOI) which
allow unambiguously referencing these data artifacts,
and properly citing them in scientific publications.

III. Approach
The work to be carried out can be roughly broken down
into two main efforts: (1) the development of the atom-
typing framework, including the formalism to express
forcefield usage semantics, and (2) examination of case
studies designed to test, validate, and refine the atom-
typing framework. We note that these efforts will be
executed concurrently, to provide a continual loop of
development, testing, and refinement.

A. Annotation Syntax
One of the main goals of the proposed effort is to
design a domain specific language (DSL) for annotating
forcefield parameters. The DSL will be used to express
the chemical context in which the particular atom type is
applicable. This DSL will, effectively, serve as a means
to unambiguously document the forcefield. The syntax
we propose will be expressive, unambiguous, and both
human and machine readable.

Consider the following example of tagging the carbon
atoms in the perfluorobutane (shown in Fig. 1) with
its usage semantics to create the DSL. Atom type 791
in TINKER’s OPLS-aa parameter database [14] corre-
sponds to a terminal carbon of a perfluorobutane chain.
This will be annotated with the following statement:

C791 : type = C &

count(bonded atoms(type = F )) = 3 &

count(bonded atoms(type = C)) = 1.

(1)

This means that atom type C791 is a carbon (C) atom,
which can be used in a chemical context where it has
3 bonded fluorines (F ), and one carbon. Similarly, atom
type 792, applicable to carbon atoms that are part of a
fluorocarbon backbone, would be annotated as
C792 : type = C &

count(bonded atoms(type = C)) = 2 &

count(bonded atoms(type = F )) = 2.

(2)

Notice that the above annotations are logic statements
consisting of predicates over the topology: type = C

evaluates to true if and only if the chemical species
of the atom is carbon (here, C is a built-in type);
bonded atoms() evaluates to the set of all atoms bonded
to the one of interest, which can be further filtered
by predicates. For instance, bonded atoms(type!=C)
would evaluate to a set of all non-carbon bonded atoms.
The proposed DSL will also supports functions on sets,
such as count(), and common set operations such as
union, intersection, difference, etc. Also, the formalism
will support the existential and universal quantifiers
(exists() and for all()) to allow evaluating first-order
logic statements over sets. Furthermore, the language
will include support, through built-in functions, to ex-
press common molecular structures that are too verbose
to express otherwise, such as, for instance, rings of a
particular size.

For convenience, we will allow the annotations to
reference user-defined types in the language (not just
the built-in chemical species, such as C and F). The
statement
C791 : type = C &

count(bonded atoms(type = F )) = 3 &

count(bonded atoms(type = C792)) = 1

(3)

would specify that the carbon atom at the end of the
fluorocarbon chain must have a C729 type neighbor,
which is a carbon in the fluorocarbon backbone. This is
clearly a more restrictive atom type usage specification
than Eq. 1, allowing it to more specifically express the
chemical context.

It is crucial that the annotation syntax we propose be
future-proof and support the evolution of forcefields.
Evolution can mean two things: a.) the forcefield gets
extended with support for new chemical species, or b.)
already supported species get more specialized. Annotat-
ing the atom types for the newly added chemical species
can trivially be done incrementally. However, when an
existing atom type is specialized, other existing atom-
typing rules referencing the specialized one can also be
affected. For instance, let us assume that we want to
distinguish between C791-type fluorocarbon end groups
based on what kind of carbon they are bonded to. Let us
assume that to do this, we would remove the C791 atom
type from the forcefield and replace it with C791A for
a chemical context when the carbon neighbor is part of
a fluorocarbon backbone (C791), and with C791B if it is
not. Since the generic C791 type has been removed from
the forcefield, all existing annotations that reference it
need to be changed to reference C791A and/or C791B .

We want to avoid this, because it would make ex-
tending annotated forcefields a laborious and error-prone
task, which would hinder the wide-spread acceptance
of our proposed formalism, and would jeopardize the
success of our efforts. To tackle this issue, the anno-
tation language will allow multiple atom types to be



assigned to a given atom in a molecule, but the atom
type annotations will be required to explicitly express
the specialization relations (i.e., that atom type C792A

overrides C792). This way, if multiple atom types are
applicable to particular chemical context, it is the most
specialized one that will get assigned to the given atom.
The following example demonstrates a possible syntax
to achieve that, by including the definition of a more
generic perfluoroalkane carbon, CPFA.

CPFA : type = C &

count(bonded atoms()) = 4 &

for all(bonded atoms(), type = C‖type = F )

C791 : type = CPFA &

count(bonded atoms(type = F )) = 3 &

count(bonded atoms(type = C)) = 1

@overrides(CPFA)

C791A : type = C791 &

count(bonded atoms(type = C792)) = 1

@overrides(C791)

C791B : type = C791 &

!exists(bonded atoms(), type = C792)

@overrides(C791)
(4)

Support for overriding annotations is important for
two reasons. First, it allows for incremental development
of forcefields, and second, the overridden, more general
atom types can be used as wildcards in references. Con-
sider the following annotation of a torsional term defined
over four carbon atoms on a fluorocarbon backbone
(bonds, and angles are annotated similarly):

C13 C13 C13 C13PFA : (CPFA, C792, C792, CPFA)
(5)

This annotation defines that the torsional term
C13 C13 C13 C13PFA is applicable to a series of
four carbon atoms such that the first and the last one
can be any kind of carbon in a fluorocarbon molecule,
but the two middle atoms must be of a more specific
type, C792, with exactly two carbon neighbors. This
allows us to uniquely identify bonded interactions for
atom-types that are of the same “atom class.” The DSL
can also be extended to provide other parameters that
may be required, for example, a molecular length option
to unique identify instances when a specific torsion
parameter should be used.

Apart from annotating atom types and various bonded
interaction types (bonds, angles, torsions) in the force-
field, the proposed language supports global invariants,
as well. These invariants can be used to express con-
straints on the applicability of the forcefield as a whole,
and are essential to prevent force field use on unsup-
ported topologies. For example, if the force field cannot

handle molecules with ring structures, a global invariant
can state that:

for all(type = C, !in ring()). (6)

We note that as part of defining the DSL for annotating
the forcefield, we will develop various “helper” tools to
ensure proper syntax usage.

B. The Atom-Typing Tool
Our approach differs from existing atom-typing tools in
a number of ways. First, existing tools are forcefield-
specific, while the proposed atom-typer is forcefield-
agnostic. Second, the common practice is to hard-code
the atom-typing logic into the tool’s source code, which
makes the code hard to extend as the forcefield evolves.
The formalism we propose factors out the atom-typing
logic into declarative annotations, which, instead of
describing how atom typing rules are executed, states
the invariants of the chemical context that must hold
true for a given atom type or parameters. The proposed
atom-typer will interpret this declarative formalism, and
compute the atom type assignments that satisfy the
invariants. Third, existing tools often do not cover all
chemical contexts supported by the forcefield, but do
produce some (potentially bogus) output when run on
topologies that include such contexts. Our tool relies on
a three-pronged approach to alleviate such problems: 1)
formal verification of forcefield annotations that reveal
omissions and contradictions, 2) global invariants in the
forcefield that map to assertions on the input topologies,
warning the user of unsupported molecular features, and
3) a proposed test suite and continuous integration setup
that validates the annotated forcefields against known,
correctly atom-typed topologies.

An important goal of the proposed effort is to lever-
age the annotated forcefields to automatically atom-
type complex molecular systems. The description of the
molecular system must include at least the chemical
species of the atoms (element names or atomic numbers),
and their connectivity (bonds), both of which could be
provided, for instance, from our previously developed
mBuild tool [22], [23]. The atom-typer tool we propose
to develop will read this topology, along with an anno-
tated forcefield specification, and will produce an output
topology with the forcefield specific atom types, as well
as bonded interaction types (bonds, angles, torsions, etc.)
and associated parameters, which can be used as input
to a molecular simulator.

For the atom-typer tool, we will investigate the fol-
lowing implementation approaches:

Naive approach. A naive algorithm first orders the
atom type annotations according to the “referenced-by”
relationship, that is, if annotation C791 references anno-
tation C792, then C791 will precede C792 in the order.
Then, following this ordering, the algorithm evaluates
all atom-type annotations for all atoms in the input



topology. This ensures that all referenced atom-typing
rules are evaluated before those that reference them. If
multiple annotations evaluated to true for a given atom
in the input topology (e.g. CPFA, C791, and C791A), the
most specialized type (C791A) will be chosen, following
the @overrides relations of the annotations. Obviously,
this naive approach would fail if no partial ordering
of atom type annotations would exist, i.e., if there are
annotations that mutually reference each other, or if
circular dependencies exist.

Fixpoint-based method. Allowing recursion in anno-
tations would make the language more expressive. But in
order to accommodate recursive annotations, we need to
tweak the naive approach. First, the fixpoint-based solver
evaluates the primitive rules, i.e., the ones that do not
reference others, for every atom in the topology. If an
annotation evaluates to true (on any atom), it enables
those annotations that reference it. When the enabled
annotation is then evaluated, it, in turn, may enable or re-
enable others. This continues until no further annotations
are enabled (that is, a fixpoint is reached), which is the
termination condition of the iteration.

Logic programming. Logic programming lan-
guages [24], such as Prolog [25] or Datalog [26], that
have been designed for deductive reasoning, are partic-
ularly useful in this context. Logic programs consists of
facts, i.e., things that always hold true (e.g., “Mickey
is a mouse”, “Pluto is a dog”, “Mars is a planet”),
and deduction rules that can be used to define relations
(e.g., “a mouse is an animal”, “a dog is an animal”).
The program is then run by the user posting queries
(e.g., “list all animals”), which the interpreter runtime
executes and evaluates (returning Mickey and Pluto in
this example). By representing the “bonded-to” relations
of the input topology as tuples, and evaluating certain
non-logic functions in advance (e.g., enumerating ring
structures), we can encode them as facts in a logic pro-
gram (e.g., “atom1 is a carbon”, “atom2 is a hydrogen”,
“atom1 is part of ring1”, “atom1 is bonded to atom2”,
etc.). Similarly, the annotations of the forcefield’s atom
types will be mapped to deduction rules, (e.g., “a carbon
atom with 4 bonded hydrogens is a methane carbon”).
Then, the logic program can be run by executing queries
to list atoms with each atom type (e.g., “list all methane
carbons”).

An important difference between Prolog and Datalog
is that while Prolog is an expressive, general purpuse
logic programming language, Datalog is not Turing-
complete, and mostly focuses on reasoning about data.
Also, Datalog imposes restrictions on the the use of
negation and recursion (Prolog does not), however, Dat-
alog queries are always guaranteed to terminate (while
in Prolog, there are no such guarantee).

In the proposed effort, we will investigate how force-
field usage specifications and input topologies can be

mapped to Datalog, what are the performance impli-
cations, including Datalog query execution scales with
the topology size and the number of atom types in the
forcefield.

Subgraph isomorphism. We expect that many (but
not all) of the forcefield annotations will, implicitly,
describe the chemical context as a subgraph. While the
subgraph isomorphism problem, in the general case, is
NP-complete [27], this is not the case with the problem
of finding where a particular chemical neighborhood is
present in the overall topology [28]. This is due to the
fact that chemical topologies belong a special class of
graphs (planar graphs) where the maximum number of
bonded atoms is well defined (i.e., never more than 4 for
covalently bonded systems), and that the chemical neigh-
borhoods in question tend to be relatively small. State of
the art graph matching solutions that employ a plethora
of optimization techniques and exploit parallelism today
can scale up to graphs with 109 nodes [29].

We suspect that for certain kinds of annotations,
especially those involving ring structures, a subgraph
matching based approach would provide better perfor-
mance than directly mapping such atom type annotations
to, for instance, Datalog rules. Therefore, we envision
that the final version of the atom-typing tool will borrow
from multiple of the above mentioned approaches.

It is important to note that the declarative nature of
the proposed annotation language allows us to decouple
the forcefield specification (what statements must hold
true for a correctly atom-typed topology) from execution
(how it is achieved). That is, the particular execution
approach we will eventually choose is orthogonal to
the forcefield annotation syntax, so the implementation
of the atom-typer tool can evolve independently of the
forcefield annotations.

C. Automated Verification, Validation, and Testing
Annotating a forcefield with atom-typing semantics is
a major undertaking, and it is inevitable that we make
errors on the way. The same is true for a complex piece
of software, such as the atom-typer tool. We believe that
through proper testing, verification, and validation, we
can build quality forcefield annotations and tools that
either produce the correct atom-typing results, or fail
with adequate warnings or error messages. Our approach
is unique in that it provides two very distinct types of
testing: 1) verification of the underlying rules to eval-
uate inconsistencies and 2) validation of the outputted
molecular models.

1) Verification
With verification, we want to answer the question: “Are
we annotating the forcefield correctly?” The fact that our
proposed annotation syntax can be mapped to first-order
logic statements makes it possible to “reason about” the
annotated forcefield as system of atom-typing rules, even



without applying them to molecular topologies. That is,
in logic programming terms, we can reason about the
rules without the facts. We cannot emphasize enough
the importance of formal verification here. It may reveal
subtle and latent errors in the annotation logic of the
forcefield that would be only possible to detect through
thorough testing by running the atom-typer on a large
swath of different topologies.

Are there rules that are not decidable? Are there any
annotations that will never evaluate to true, irrespective
of the input chemical topology? Can it ever happen that
two rules may hold true at the same time, without one
overriding the other? Are there any atom-typing rules
that are in contradiction with the global invariants? If
the answer to any of the above questions is yes, it
indicates an error in the logical structure of the forcefield
annotations. We propose to verify such properties on the
system of forcefield annotations, and will provide a set
of development tools that help the forcefield developers
pinpoint these inconsistencies early in the forcefield
development process. We expect that some of the above
violations will be detectable by the Datalog interpreter
after the annotations are mapped to Datalog syntax,
while others, pertaining to ensuring boolean satisfiability,
will require us to integrate a theorem prover such as the
widely used Z3 solver from Microsoft Research [30].

Our proposed goal is to prove that the forcefield is
complete in the logical sense, that is, if the forcefield’s
annotations evaluate to “true” on a correctly atom-typed
topology, then the atom-typing tool is guaranteed to
compute the correct atom-typing, given the annotated
forcefield, the chemical species of the atoms and their
connectivity as inputs. We will strive to reach this goal,
even at the cost of reducing the expressiveness of the
annotation language.

2) Validation of Forcefield Annotations
With validation, we want to answer the question: “Did
we come up with the correct annotations?” If we
run the atom-typer on a molecular topology and it does
not produce the expected results, it is vital to know –
particularly for an interdisciplinary team of chemical
scientists and computer engineers – whether the error
is in the forcefield annotations or in the atom-typer’s
source code. With validation, we want to focus on
errors in the forcefield annotations, without having to
worry about potential software bugs in the atom-typer’s
implementation.

Notice that if an annotated forcefield passes verifica-
tion (i.e., it is complete in the logical sense), we can
validate it in an isolated way, without having to execute
the atom-typer tool. It is sufficient to check that the
forcefield’s annotation statements hold true on a set of
correctly atom-typed topologies (test cases), which will
entail, due to the completeness property, that the atom-
typer will be able to compute the correct atom-typing.

We propose to develop a validator tool that does just
this this: takes an annotated forcefield as an input, and
iterates through a large number of correctly atom-typed
topologies ensuring that the atom-type annotations and
global invariants are never violated. If the validator finds
a topology that is in contradiction with the forcefield
annotations, it is the chemical scientist who needs to
revisit and correct the forcefield, rather than a source
code issue.

3) Testing The Atom-Typer Tool
The development and testing of the atom-typer tool is
much alike that of any software. Importantly, it can be
carried out without chemical domain expertise. This is
analogous to developing and testing a database server:
the software developers are not concerned with what
data, in what schemas, will the users store in the
database, but rather focus on testing the functionality that
implements how queries are answered. In the proposed
effort, we will use state-of-the-art software testing tools,
including unit tests packaged into test suites, as well
as coverage tools to quantify the degree to which the
source code is tested. The source code of the tools will
be stored on GitHub [31], leveraging its collaborative
development, version control, and issue tracking facili-
ties.

D. Continuous Integration
Continuous integration (CI) is a software development
practice that encourages members of the development
team to integrate code into a shared repository several
times a day. On each check-in, the software is au-
tomatically built and tested, allowing teams to detect
problems early. Commonly, CI is provided as a cloud
service. Developers set up a project with a CI service
provider (e.g., Travis CI [32], CodeShip [33], etc.), and
it is the CI service that watches the project’s source code
repository (e.g., GitHub) for changes, attempts to build
and test the code in virtual machines in the cloud, and
reports build and test results to the developers.

In the proposed effort, we will apply the CI approach
to the development process of both the annotated force-
fields and the corresponding software tools (atom-typer,
verifier, validator, etc.). For the software artifacts, CI
will be hosted at Travis CI. For the automated verifi-
cation and validation (V&V) of annotated forcefields,
we propose to develop our own cloud service, based on
BuildBot [34], an open-source framework for automating
software build, test, and release processes. The proposed
forcefield CI service (see Fig. 2) will watch the repos-
itories where the annotated forcefield files are hosted.
Also, it will integrate with existing online repositories
that host correctly atom-typed molecules, which will be
automatically downloaded and used as the “ground truth”
for forcefield validation. V&V of annotated force field
files will be triggered when either a.) changes in the



Fig. 2. Continuous integration workflow of annotated forcefield development.

repository are detected b.) new correctly-typed molecules
are added.

E. Incentivizing Community Involvement
Although there exist some meticulously well maintained
and “alive” forcefield repositories, that are, not surpris-
ingly, typically specific to a particular simulator tool
or chemical or biomolecular domain, cataloging force-
field development of the past decades into a coherent,
unified, searchable online forcefield database would be
an enormous undertaking, which is not feasible without
community involvement.

The implementation of such an online database would
not be technically challenging. Neither would be operat-
ing and maintaining such a service. However, convincing
the developers of new forcefields to upload their param-
eter sets, to correctly tag them with how and in what
context the values are applicable, to supply test cases,
etc., would surely be a futile attempt.

It is well known it is notoriously hard to get outside
users to upload their work to a repository. A novel aspect
of our community building approach is that we will
incentivize our users to do so by giving them free access
to our continuous integration infrastructure: outside users
will register their own repositories with the forcefield
CI service, which will provide automatic, continuous
verification, validation, and testing for their forcefields
at no cost.

Whenever a new commit or pull request adds or
modifies forcefield related files in the users’ registered
repositories, the CI service will trigger the verification
and validation workflow. Once a forcefield (or a new
version of a forcefield) passes all tests, the CI service
will publish it (that is, the annotated parameter set,
its source URL, and the test results) to our online
forcefield repository, assigning to it a permanent URL
and a document object identifier (DOI) for referencing
and attribution purposes.

IV. Conclusion
Through the development of a new formalism for chemi-
cal context and novel atom-typing scheme, our approach
unambiguously describes the appropriate usage of force-
field parameters and helps to reduce atom-typing as a
source of error during model development. Developing
this framework will simplify the rules needed for atom-
typing, which is crucial as forcefields continue to grow,

specialize, and become more complex. The machine-
readable annotations of forcefield usage semantics will
enable automation of tedious and error prone tasks,
and will enable new application areas, ranging from
automated forcefield comparison and cross-validation,
to complex simulation workflows integrating multiple
forcefields and simulator tools. Through offering our
verification, validation, and testing infrastructure as a
free-of-charge continuous integration service to the com-
munity, we believe that our approach has the potential to
foster community involvement through the creation of a
online forcefield repository for the annotated forcefields
that tagged with DOIs for proper referencing and attribu-
tion, the associated software, and documentation of our
framework.
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