
Lightning Talk: A Proposal for the Measurement
and Documentation of Research Software

Sustainability in Interactive Metadata Repositories
Stephan Druskat

Department of German Studies and Linguistics
Humboldt-Universität zu Berlin

Berlin, Germany
stephan.druskat@hu-berlin.de

Abstract—This paper proposes an interactive repository type
for research software metadata which measures and documents
software sustainability by accumulating metadata, and comput-
ing sustainability metrics over them. Such a repository would
help to overcome technical barriers to software sustainability
by furthering the discovery and identification of sustainable
software, thereby also facilitating documentation of research
software within the framework of software management plans.

Index Terms—Metadata, repositories, technical sustainability,
information search and retrieval, measurement, software man-
agement plans.

The identification and discovery of sustainable research
software present technical barriers to software sustainability
[1, p. 16f.]. This paper proposes to tackle these barriers by
accumulating and quantifying software metadata in interac-
tive metadata repositories (IMRs) to enable identification of
sustainable software through sustainability measurement, and
simplified discovery of suitable software through documenta-
tion of software and its sustainability.

In analogy to the discussion about data sustainability and
funders’ mandate of data management plans (DMPs), software
management plans (SMPs) would be an obvious tool for secur-
ing sustainability of newly developed software. DMPs feature
data repositories as natural targets for research data releases
as part of the data lifecycle documentation, and analogously,
software repositories should be an integral part of software
lifecycles as detailed in SMPs. In addition to source code
repositories and distribution repositories for deliverables, there
are also already a large number of research data repositories
which archive research software source code and deliverables
along with some metadata (cf. re3data.org). However, while
the latter may provide support for assessing the suitability of
a software for the intended research application, they do not
provide a lot of information about, not to mention metrics
of, the software’s sustainability. The same is true for existing
metadata repositories dedicated to research software, e.g.,
SciencePAD, the EGI Applications Database, and the DiRT
Directory. There are also other platforms providing metadata
for software, e.g., GitHub, Open Hub, and Zenodo. Some of
the metadata they provide – a rather small portion in the case

of GitHub and Zenodo, some more in the case of Open Hub –
can indeed be used to discover some sustainability aspects of
the software they cover. However, this facet is not presented
explicitly in either of the platforms. In any case, considering
the available tools and platforms, users that are interested in
acquiring a comprehensive and in-depth understanding of how
sustainable a software is will have to interpret and extrapolate
to a high degree.

However, a repository can be a suitable means to provide
documentation and measurement of software sustainability,
specifically by utilising software metadata. In order to do so, it
must: accumulate the metadata for a software that is relevant
for determining both its suitability for a research application
(to allow for straightforward discovery of software), and its
sustainability; compute sustainability metrics; document the
metrics and provide means to interactively evaluate and refine
some of them. Such a repository would also benefit projects
which will be subject to funding agencies’ potential mandate
of SMPs, as it represents a natural means of documenting the
sustainability of software developed within the project.

The conception of the envisioned IMR poses at least three
theoretical challenges, namely (1) how to give “software sus-
tainability” an operationalisable definition, (2) how to define
quantifiable criteria for sustainability, and (3) how to design
algorithms for computing comprehensible and reproducible
metrics for sustainability. While detailing (3) is beyond the
scope of this paper and is left for future research, (1) and (2)
are approached briefly in the following sections.

“Software sustainability” is an ambiguous concept, with
different agents approaching it from different angles. Refer-
ence [2] focuses on the ecological sustainability of software,
discussing software engineering only briefly. Reference [3]
focuses on the development process rather than the product.
Reference [4] – specifically discussing research software –
names training, availability, community recognition for de-
velopers, dedicated job descriptions, and funding as defining
factors for sustainability. A systematic approach to a definition
of sustainability in the context of software engineering is
presented in [5], which utilizes a basic definition of sustain-
ability as “preserving the function of a system over a definedThis work is licensed under a CC-BY-4.0 license.

http://re3data.org/
http://sciencepad.web.cern.ch/
https://www.egi.eu/services/catalogue/appdb.html
http://dirtdirectory.org/
http://dirtdirectory.org/
https://github.com/
https://www.openhub.net/
https://zenodo.org/
https://creativecommons.org/licenses/by/4.0/


timespan” [5, p. 1184] for the refinement of detailed aspects of
sustainability for and in software engineering. However, while
[5]’s approach would be operationalisable, it uses a generic,
multi-dimensional definition of sustainability (cf. [6, p. 4]) and
applies it to engineering processes rather than to features of
products and is therefore not directly adaptable for IMRs.

A definition of sustainability that can be operationalized for
the purposes of an IMR must in fact be based on the definition
of “technical sustainability” from [7, p. 470f.]: “Technical
[sustainability] refers to longevity of information, systems,
and infrastructure and their adequate evolution with changing
surrounding conditions.” The two key points of this definition,
longevity and evolution, can be concretized by transforming
another existing global concept of “sustainability”. Following
[8], an enhancement of a three-dimensional general model of
sustainability (“three column model”), we can preliminarily
define “software sustainability” via its goals: The three goals
of software sustainability are (1) ensuring the existence of the
software, (2) preserving the potential for productive operation
of the software, (3) creating and retaining possibilities for
further development and adaptation of the software. This
definition, finally, should be employable for defining and
categorizing suitable criteria for measuring the sustainability
of research software.

An IMR must accumulate quantifiable metadata pertaining
to all three sustainability goals. The parameters for the metrics
to be computed over these metadata must be based on criteria
that are themselves categorized along the lines of the sustain-
ability goals. One starting point for the compilation of a list
of criteria is [9], which defines criteria for “sustainability”,
“maintainability”, and “usability” to facilitate the evaluation
of software products (e.g.: “Documentation is on the project
web site”, “software has an open source licence”, “source
code is commented”). As the definition for sustainability given
above includes all three of these notions (usability arguably
counting towards goal (2)), the items given for the criteria
in [9] can be transformed into parameters for computing
sustainability metrics for an IMR, although some items may
require further definitory work to make them quantifiable.
Further criteria that are not included in [9] – e.g., pertaining
to human resources available for a software project – can
be identified introspectively, elicitated or crowd-sourced, and
made quantifiable.

In order to leverage fully the available metadata for a
software, and at the same time preserve the reproducibility of
the sustainability metric and secure it against manipulation, it
is expedient to use more than one metric for the representation
of sustainability. E.g., a “hard” metric could be computed
over metadata that is both quantifiable and objective (such as
whether a software is open source or not), a “semi-hard” metric
over metadata that is objective but hard to quantify (e.g., use
of a programming language or build system that in itself may
be more or less sustainable), and a “soft” metric taking into
account qualitative and subjective metadata (e.g., whether a UI
is intuitive). Both the “hard” and “semi-hard” metrics would
be reproducible and would likely be hard to tamper with, as

they are based on objective metadata. The use of these three
metrics would additionally allow for user interaction with the
metadata, i.e., users could review and evaluate metadata, and
these evaluations could in turn be used to detect bad data
and re-compute metrics where necessary. User contributions
in the form of, e.g., votes on or grading of specific metadata
points would inherently be constituting the “soft” metric, while
other forms of contributions, such as documenting the use
of a software (e.g., in conjunction with a reference to work
documenting the use of the software), could contribute to
either of the “harder” metrics as well. Interactivity can also
be used for gamification purposes to attract users, and provide
software originators with further incentive to submit their data,
e.g., by releasing standings tables and issuing metrics graphics
for use on websites, etc.

The accumulation of the metadata can be performed by
different means: direct input by the originator of the software,
harvesting data from existing repositories via, e.g., GitHub
and Open Hub APIs, dedicated crawling of source code
repositories, etc. The latter two methods can also be used for
verification and a preliminary quantification of the input. The
metadata must be available in the repository as structured text
in a well-defined format, e.g., based on XML or JSON.

In summary, an interactive metadata repository, field-
specific or not, that measures and documents the sustainability
of software can be a valuable tool not only for the discovery of
research software, but also for the identification of sustainable
– and therefore preferable – software, and as an integral part
of the implementation of SMPs.

In future research, the author intends to further develop the
idea of such IMRs within the framework of a PhD thesis.

REFERENCES

[1] S. Hettrick, “Research software sustainability: Report on a Knowledge
Exchange workshop,” The Software Sustainability Institute, Tech. Rep.,
2016. [Online]. Available: http://repository.jisc.ac.uk/6332/

[2] J. Gröger and M. Köhn, “Nachhaltige Software. Dokumentation des
Fachgesprächs “Nachhaltige Software” am 28.11.2014,” Umweltbun-
desamt, Dokumentationen 07/2015, June 2015. [Online]. Available:
http://www.umweltbundesamt.de/en/publikationen/nachhaltige-software

[3] K. Tate, Sustainable Software Development: An Agile Perspective.
Boston, Mass.: Addison-Wesley, 2005.

[4] C. Goble, “Better software, better research,” IEEE Internet Computing,
vol. 18, no. 5, pp. 4–8, 2014.

[5] B. Penzenstadler, “Towards a definition of sustainability in and
for software engineering,” in Proceedings of the 28th Annual
ACM Symposium on Applied Computing, ser. SAC ’13. New
York, NY, USA: ACM, 2013, pp. 1183–1185. [Online]. Available:
http://doi.acm.org/10.1145/2480362.2480585

[6] B. Penzenstadler and H. Femmer, “A generic model for sustainability
with process- and product-specific instances,” in Proceedings of the
2013 Workshop on Green in/by Software Engineering, ser. GIBSE
’13. New York, NY, USA: ACM, 2013, pp. 3–8. [Online]. Available:
http://doi.acm.org/10.1145/2451605.2451609

[7] C. Becker, R. Chitchyan, L. Duboc, S. Easterbrook, B. Penzenstadler,
N. Seyff, and C. C. Venters, “Sustainability design and software: The
Karlskrona Manifesto,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 2, May 2015, pp. 467–476.

[8] J. Jörissen, J. Kopfmüller, V. Brandl, and M. Paetau, Ein integratives
Konzept nachhaltiger Entwicklung, ser. Wissenschaftliche Berichte
FZKA. Karlsruhe: Forschungszentrum Karlsruhe, 1999, no. 6393.
[Online]. Available: http://www.itas.kit.edu/pub/v/1999/joua99a.pdf

[9] M. Jackson, S. Crouch, and R. Baxter, “Software evaluation: criteria-
based assessment,” Software Sustainability Institute, 2011.

http://repository.jisc.ac.uk/6332/
http://www.umweltbundesamt.de/en/publikationen/nachhaltige-software
http://doi.acm.org/10.1145/2480362.2480585
http://doi.acm.org/10.1145/2451605.2451609
http://www.itas.kit.edu/pub/v/1999/joua99a.pdf

	References

